Source code for lsst.sims.movingObjects.baseObs

import os
import numpy as np
import warnings

from lsst.utils import getPackageDir
from lsst.sims.photUtils import Bandpass
from lsst.sims.photUtils import Sed
from lsst.sims.utils import angularSeparation
from lsst.sims.utils import ModifiedJulianDate
from lsst.sims.utils import ObservationMetaData
from lsst.sims.coordUtils import lsst_camera
from lsst.sims.coordUtils import chipNameFromRaDecLSST
from lsst.afw.cameraGeom import SCIENCE, WAVEFRONT, GUIDER, FOCUS

from .ooephemerides import PyOrbEphemerides

__all__ = ['BaseObs']


[docs]class BaseObs(object): """ Base class to generate observations of a set of moving objects. Parameters ---------- footPrint: str, opt Specify the footprint for the FOV. Options include "camera", "circle", "rectangle". 'Camera' means use the actual LSST camera footprint (following a rough cut with a circular FOV). Default is circular FOV. rFov : float, opt If footprint is "circular", this is the radius of the fov (in degrees). Default 1.75 degrees. xTol : float, opt If footprint is "rectangular", this is half of the width of the (on-sky) fov in the RA direction (in degrees). Default 5 degrees. (so size of footprint in degrees will be 10 degrees in the RA direction). yTol : float, opt If footprint is "rectangular", this is half of the width of the fov in Declination (in degrees). Default is 3 degrees (so size of footprint in degrees will be 6 degrees in the Dec direction). ephMode: str, opt Mode for ephemeris generation - nbody or 2body. Default is nbody. ephType: str, opt Type of ephemerides to generate - full or basic. Full includes all values calculated by openorb; Basic includes a more basic set. Default is Basic. (this includes enough information for most standard MAF metrics). ephFile: str or None, opt The name of the planetary ephemerides file to use for ephemeris generation. Default (None) will use the default for PyOrbEphemerides. obsCode: str, opt Observatory code for ephemeris generation. Default is "I11" - Cerro Pachon. obsTimeCol: str, opt Name of the time column in the obsData. Default 'observationStartMJD'. obsTimeScale: str, opt Type of timescale for MJD (TAI or UTC currently). Default TAI. seeingCol: str, opt Name of the seeing column in the obsData. Default 'seeingFwhmGeom'. This should be the geometric/physical seeing as it is used for the trailing loss calculation. visitExpTimeCol: str, opt Name of the visit exposure time column in the obsData. Default 'visitExposureTime'. obsRA: str, opt Name of the RA column in the obsData. Default 'fieldRA'. obsDec: str, opt Name of the Dec column in the obsData. Default 'fieldDec'. obsRotSkyPos: str, opt Name of the Rotator column in the obsData. Default 'rotSkyPos'. obsDegrees: bool, opt Whether the observational data is in degrees or radians. Default True (degrees). outfileName : str, opt The output file name. Default is 'lsst_obs.dat'. obsMetadata : str, opt A string that captures provenance information about the observations. For example: 'kraken_2026, MJD 59853-61677' or 'baseline2018a minus NES' Default ''. """ def __init__(self, footprint='circle', rFov=1.75, xTol=5, yTol=3, ephMode='nbody', ephType='basic', obsCode='I11', ephFile=None, obsTimeCol='observationStartMJD', obsTimeScale='TAI', seeingCol='seeingFwhmGeom', visitExpTimeCol='visitExposureTime', obsRA='fieldRA', obsDec='fieldDec', obsRotSkyPos='rotSkyPos', obsDegrees=True, outfileName='lsst_obs.dat', obsMetadata=''): # Values for identifying observations. self.footprint = footprint.lower() if self.footprint == 'camera': self._setupCamera() self.rFov = rFov self.xTol = xTol self.yTol = yTol # Values for ephemeris generation. if ephMode.lower() not in ('2body', 'nbody'): raise ValueError('Ephemeris generation must be 2body or nbody.') self.ephMode = ephMode self.ephType = ephType self.ephFile = ephFile # Strings relating to the names of columns in the observation metadata. self.obsCode = obsCode self.obsTimeCol = obsTimeCol self.obsTimeScale = obsTimeScale self.seeingCol = seeingCol self.visitExpTimeCol = visitExpTimeCol self.obsRA = obsRA self.obsDec = obsDec self.obsRotSkyPos = obsRotSkyPos self.obsDegrees = obsDegrees # Save a space for the standard object colors. self.colors = {} self.outfileName = outfileName if obsMetadata == '': self.obsMetadata = 'unknown simdata source' else: self.obsMetadata = obsMetadata def _setupCamera(self): self.camera = lsst_camera() self.ccd_type_dict = {SCIENCE: 'science', WAVEFRONT: 'wavefront', GUIDER: 'guider', FOCUS: 'focus'}
[docs] def setupEphemerides(self): """Initialize the ephemeris generator. Save the setup PyOrbEphemeris class. This uses the default engine, pyoorb - however this could be overwritten to use another generator. """ self.ephems = PyOrbEphemerides(ephfile=self.ephFile)
[docs] def generateEphemerides(self, sso, times, ephMode=None, ephType=None): """Generate ephemerides for 'sso' at times 'times' (assuming MJDs, with timescale self.obsTimeScale). The default engine here is pyoorb, however this method could be overwritten to use another ephemeris generator, such as ADAM. The initialized pyoorb class (PyOrbEphemerides) is saved, to skip setup on subsequent calls. Parameters ---------- sso: lsst.sims.movingObjects.Orbits Typically this will be a single object. times: np.ndarray The times at which to generate ephemerides. MJD. ephMode: str or None, opt Potentially override default ephMode (self.ephMode). Must be '2body' or 'nbody'. Returns ------- pandas.Dataframe Ephemerides of the sso. """ if not hasattr(self, "ephems"): self.setupEphemerides() if ephMode is None: ephMode = self.ephMode if ephType is None: ephType = self.ephType self.ephems.setOrbits(sso) ephs = self.ephems.generateEphemerides(times, timeScale = self.obsTimeScale, obscode = self.obsCode, ephMode=ephMode, ephType=ephType, byObject=True) return ephs
[docs] def calcTrailingLosses(self, velocity, seeing, texp=30.): """Calculate the detection and SNR trailing losses. 'Trailing' losses = loss in sensitivity due to the photons from the source being spread over more pixels; thus more sky background is included when calculating the flux from the object and thus the SNR is lower than for an equivalent brightness stationary/PSF-like source. dmagTrail represents this loss. 'Detection' trailing losses = loss in sensitivity due to the photons from the source being spread over more pixels, in a non-stellar-PSF way, while source detection is (typically) done using a stellar PSF filter and 5-sigma cutoff values based on assuming peaks from stellar PSF's above the background; thus the SNR is lower than for an equivalent brightness stationary/PSF-like source (and by a greater factor than just the simple SNR trailing loss above). dmagDetect represents this loss. Parameters ---------- velocity : np.ndarray or float The velocity of the moving objects, in deg/day. seeing : np.ndarray or float The seeing of the images, in arcseconds. texp : np.ndarray or float, opt The exposure time of the images, in seconds. Default 30. Returns ------- (np.ndarray, np.ndarray) or (float, float) dmagTrail and dmagDetect for each set of velocity/seeing/texp values. """ a_trail = 0.761 b_trail = 1.162 a_det = 0.420 b_det = 0.003 x = velocity * texp / seeing / 24.0 dmagTrail = 1.25 * np.log10(1 + a_trail * x ** 2 / (1 + b_trail * x)) dmagDetect = 1.25 * np.log10(1 + a_det * x ** 2 / (1 + b_det * x)) return (dmagTrail, dmagDetect)
[docs] def readFilters(self, filterDir=None, bandpassRoot='total_', bandpassSuffix='.dat', filterlist=('u', 'g', 'r', 'i', 'z', 'y'), vDir=None, vFilter='harris_V.dat'): """ Read (LSST) and Harris (V) filter throughput curves. Only the defaults are LSST specific; this can easily be adapted for any survey. Parameters ---------- filterDir : str, opt Directory containing the filter throughput curves ('total*.dat') Default set by 'LSST_THROUGHPUTS_BASELINE' env variable. bandpassRoot : str, opt Rootname of the throughput curves in filterlist. E.g. throughput curve names are bandpassRoot + filterlist[i] + bandpassSuffix Default 'total_' (appropriate for LSST throughput repo). bandpassSuffix : str, opt Suffix for the throughput curves in filterlist. Default '.dat' (appropriate for LSST throughput repo). filterlist : list, opt List containing the filter names to use to calculate colors. Default ('u', 'g', 'r', 'i', 'z', 'y') vDir : str, opt Directory containing the V band throughput curve. Default None = $SIMS_MOVINGOBJECTS_DIR/data. vFilter : str, opt Name of the V band filter curve. Default harris_V.dat. """ if filterDir is None: filterDir = os.getenv('LSST_THROUGHPUTS_BASELINE') if filterDir is None: raise ValueError('Please set filterDir or env variable LSST_THROUGHPUTS_BASELINE') if vDir is None: vDir = os.path.join(getPackageDir('SIMS_MOVINGOBJECTS'), 'data') self.filterlist = filterlist # Read filter throughput curves from disk. self.lsst = {} for f in self.filterlist: self.lsst[f] = Bandpass() self.lsst[f].readThroughput(os.path.join(filterDir, bandpassRoot + f + bandpassSuffix)) self.vband = Bandpass() self.vband.readThroughput(os.path.join(vDir, vFilter))
[docs] def calcColors(self, sedname='C.dat', sedDir=None): """Calculate the colors for a given SED. If the sedname is not already in the dictionary self.colors, this reads the SED from disk and calculates all V-[filter] colors for all filters in self.filterlist. The result is stored in self.colors[sedname][filter], so will not be recalculated if the SED + color is reused for another object. Parameters ---------- sedname : str (opt) Name of the SED. Default 'C.dat'. sedDir : str (opt) Directory containing the SEDs of the moving objects. Default None = $SIMS_MOVINGOBJECTS_DIR/data. Returns ------- dict Dictionary of the colors in self.filterlist for this particular Sed. """ if sedname not in self.colors: if sedDir is None: sedDir = os.path.join(getPackageDir('SIMS_MOVINGOBJECTS'), 'data') moSed = Sed() moSed.readSED_flambda(os.path.join(sedDir, sedname)) vmag = moSed.calcMag(self.vband) self.colors[sedname] = {} for f in self.filterlist: self.colors[sedname][f] = moSed.calcMag(self.lsst[f]) - vmag return self.colors[sedname]
[docs] def ssoInCircleFov(self, ephems, obsData): """Determine which observations are within a circular fov for a series of observations. Note that ephems and obsData must be the same length. Parameters ---------- ephems : np.recarray Ephemerides for the objects. obsData : np.recarray The observation pointings. Returns ------- numpy.ndarray Returns the indexes of the numpy array of the object observations which are inside the fov. """ return self._ssoInCircleFov(ephems, obsData, self.rFov)
def _ssoInCircleFov(self, ephems, obsData, rFov): if not self.obsDegrees: sep = angularSeparation(ephems['ra'], ephems['dec'], np.degrees(obsData[self.obsRA]), np.degrees(obsData[self.obsDec])) else: sep = angularSeparation(ephems['ra'], ephems['dec'], obsData[self.obsRA], obsData[self.obsDec]) idxObs = np.where(sep <= rFov)[0] return idxObs
[docs] def ssoInRectangleFov(self, ephems, obsData): """Determine which observations are within a rectangular FoV for a series of observations. Note that ephems and obsData must be the same length. Parameters ---------- ephems : np.recarray Ephemerides for the objects. obsData : np.recarray The observation pointings. Returns ------- numpy.ndarray Returns the indexes of the numpy array of the object observations which are inside the fov. """ return self._ssoInRectangleFov(ephems, obsData, self.xTol, self.yTol)
def _ssoInRectangleFov(self, ephems, obsData, xTol, yTol): deltaDec = np.abs(ephems['dec'] - obsData[self.obsDec]) deltaRa = np.abs((ephems['ra'] - obsData[self.obsRA]) * np.cos(np.radians(obsData[self.obsDec]))) idxObs = np.where((deltaDec <= yTol) & (deltaRa <= xTol))[0] return idxObs
[docs] def ssoInCameraFov(self, ephems, obsData): """Determine which observations are within the actual camera footprint for a series of observations. Note that ephems and obsData must be the same length. Parameters ---------- ephems : np.recarray Ephemerides for the objects. obsData : np.recarray Observation pointings. Returns ------- np.ndarray Returns the indexes of the numpy array of the object observations which are inside the fov. """ if not hasattr(self, 'camera'): self._setupCamera() epoch = 2000.0 # See if the object is within 'rFov' of the center of the boresight. idxObsRough = self._ssoInCircleFov(ephems, obsData, rFov=2.1) # Then test for the camera footprint exactly. idxObs = [] for idx in idxObsRough: mjd_date = obsData[idx][self.obsTimeCol] if self.obsTimeScale == 'TAI': mjd = ModifiedJulianDate(TAI=mjd_date) elif self.obsTimeScale == 'UTC': mjd = ModifiedJulianDate(UTC=mjd_date) else: warnings.warn('Expected timescale of TAI or UTC, but did not match. Using TAI.') mjd = ModifiedJulianDate(TAI=mjd_date) if not self.obsDegrees: obs_metadata = ObservationMetaData(pointingRA=np.degrees(obsData[idx][self.obsRA]), pointingDec=np.degrees(obsData[idx][self.obsDec]), rotSkyPos=np.degrees(obsData[idx][self.obsRotSkyPos]), mjd=mjd) else: obs_metadata = ObservationMetaData(pointingRA=obsData[idx][self.obsRA], pointingDec=obsData[idx][self.obsDec], rotSkyPos=obsData[idx][self.obsRotSkyPos], mjd=mjd) # Catch the warnings from astropy about the time being in the future. with warnings.catch_warnings(record=False): warnings.simplefilter('ignore') chipName = chipNameFromRaDecLSST(ra=ephems['ra'][idx], dec=ephems['dec'][idx], epoch=epoch, obs_metadata=obs_metadata) if chipName != None: tt = self.ccd_type_dict[self.camera[chipName].getType()] if tt == 'science': idxObs.append(idx) idxObs = np.array(idxObs, int) return idxObs
[docs] def ssoInFov(self, ephems, obsData): """Convenience layer - determine which footprint method to apply (from self.footprint) and use it. Parameters ---------- ephems : np.recarray Ephemerides for the objects. obsData : np.recarray Observation pointings. Returns ------- np.ndarray Returns the indexes of the numpy array of the object observations which are inside the fov. """ if self.footprint == "camera": return self.ssoInCameraFov(ephems, obsData) elif self.footprint == "rectangle": return self.ssoInRectangleFov(ephems, obsData) elif self.footprint == "circle": return self.ssoInCircleFov(ephems, obsData) else: warnings.warn("Using circular fov; could not match specified footprint.") self.footprint = 'circle' return self.ssoInCircleFov(ephems, obsData)
# Put together the output. def _openOutput(self): # Make sure the directory exists to write the output file into. outDir = os.path.split(self.outfileName)[0] if len(outDir) > 0: if not os.path.isdir(outDir): os.makedirs(outDir) # Open the output file for writing. self.outfile = open(self.outfileName, 'w') # Write metadata into the header, using # to identify as comment lines. self.outfile.write('# %s\n' % self.obsMetadata) self.outfile.write('# %s\n' % self.outfileName) # Write some generic ephemeris generation information. self.outfile.write('# ephemeris generation via %s\n' % self.ephems.__class__.__name__) self.outfile.write('# planetary ephemeris file %s \n' % self.ephems.ephfile) self.outfile.write('# obscode %s\n' % self.obsCode) # Write some class-specific metadata about observation generation. self._headerMeta() # Write the footprint information. self.outfile.write('# pointing footprint %s\n' % (self.footprint)) if self.footprint == 'circle': self.outfile.write('# rfov %f\n' % self.rFov) if self.footprint == 'rectangle': self.outfile.write('# xTol %f yTol %f\n' % (self.xTol, self.yTol)) # Record columns used from simulation data self.outfile.write('# obsRA %s obsDec %s obsRotSkyPos %s obsDeg %s\n' % (self.obsRA, self.obsDec, self.obsRotSkyPos, self.obsDegrees)) self.outfile.write('# obsMJD %s obsTimeScale %s seeing %s expTime %s\n' % (self.obsTimeCol, self.obsTimeScale, self.seeingCol, self.visitExpTimeCol)) self.wroteHeader = False def _headerMeta(self): # Generic class header metadata, should be overriden with class specific version. self.outfile.write('# generic header metadata\n') self.outfile.write('# ephMode %s\n' % (self.ephMode))
[docs] def writeObs(self, objId, objEphs, obsData, sedname='C.dat'): """ Call for each object; write out the observations of each object. This method is called once all of the ephemeris values for each observation are calculated; the calling method should have already done the matching between ephemeris & simulated observations to find the observations where the object is within the specified fov. Inside this method, the trailing losses and color terms are calculated and added to the output observation file. The first time this method is called, a header will be added to the output file. Parameters ---------- objId : str or int or float The identifier for the object (from the orbital parameters) objEphs : numpy.ndarray The ephemeris values of the object at each observation. Note that the names of the columns are encoded in the numpy structured array, and any columns included in the returned ephemeris array will also be propagated to the output. obsData : numpy.ndarray The observation details from the simulated pointing history, for all observations of the object. All columns automatically propagated to the output file. sedname : str, out The sed_filename for the object (from the orbital parameters). Used to calculate the appropriate color terms for the output file. Default "C.dat". """ # Return if there's nothing to write out. if len(objEphs) == 0: return # Open file if needed. if not hasattr(self, "outfile"): self._openOutput() # Calculate the extra columns we want to write out # (dmag due to color, trailing loss, and detection loss) # First calculate and match the color dmag term. dmagColor = np.zeros(len(obsData), float) dmagColorDict = self.calcColors(sedname) filterlist = np.unique(obsData['filter']) for f in filterlist: if f not in dmagColorDict: raise UserWarning('Could not find filter %s in calculated colors!' %(f)) match = np.where(obsData['filter'] == f)[0] dmagColor[match] = dmagColorDict[f] magFilter = objEphs['magV'] + dmagColor # Calculate trailing and detection loses. dmagTrail, dmagDetect = self.calcTrailingLosses(objEphs['velocity'], obsData[self.seeingCol], obsData[self.visitExpTimeCol]) # Turn into a recarray so it's easier below. dmags = np.rec.fromarrays([magFilter, dmagColor, dmagTrail, dmagDetect], names=['magFilter', 'dmagColor', 'dmagTrail', 'dmagDetect']) outCols = ['objId',] + list(objEphs.dtype.names) + list(obsData.dtype.names) + list(dmags.dtype.names) if not self.wroteHeader: writestring = '' for col in outCols: writestring += '%s ' %(col) self.outfile.write('%s\n' %(writestring)) self.wroteHeader = True # Write results. for eph, simdat, dm in zip(objEphs, obsData, dmags): writestring = '%s ' %(objId) for col in eph.dtype.names: writestring += '%s ' %(eph[col]) for col in simdat.dtype.names: writestring += '%s ' %(simdat[col]) for col in dm.dtype.names: writestring += '%s ' %(dm[col]) self.outfile.write('%s\n' %(writestring)) self.outfile.flush()